Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

M Tréguer-Delapierre

M Tréguer-Delapierre

University of Bordeaux, ICMCB-CNRS, France

Title: Design and synthesis of hybrid nano-objects of unconventional morphologies

Biography

Biography: M Tréguer-Delapierre

Abstract

Combining material components of different nature in the same nanoparticle is a new challenge in Nanoscience and offers a wide range of new and largely unexplored possibilities for developing novel materials. In particular, proper design of the hybrid nanoparticle should permit a control over the interaction of the material components to combine different confinement-induced properties, create new ones or introduce new functionalization. In this presentation, we will focus on the synthetic route of metallo-dielectric components targeting sensing, photonic materials as well as super lenses. We will show how to build stable and robust raspberry-like nanostructures with close-packed plasmonic satellites with high purity and high reproducibility as well as their unusual optical properties. They exhibit numerous hot spots at satellite junctions, resulting in excellent surface-enhanced Raman scattering (SERS) performance as well as artificial optical magnetism properties at visible light frequencies. These properties are found to be highly dependent on their structure. Finally, we will evidence how to get control of positioning of each component with respect to the other by using the concept of patchy particles. By using dielectric particles with a well-controlled number of patches at their surface, we will show how the number and the location of the plasmonic satellites could be elegantly controlled in order to enhance the optical properties. The self-assembly of these elemental nanosystems offers new possibilities to create complex supracolloids for optical metamaterials or for the ultrasensitive screening of analytical targets, such as those relevant to medical and environmental sciences.

Speaker Presentations

Speaker PDFs