Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Yo Tanaka

Yo Tanaka

RIKEN, Japan

Title: Application of ultra-thin flexible glass sheets to microfluidic devices

Biography

Biography: Yo Tanaka

Abstract

Ultra thin glass is a glass sheet with a minimum thickness of a few micrometers fabricated using an overflow fusion downdraw process. In this lecture, application of this very flexible glass sheet to microfluidic devices is presented. Microfluidic technology is a major research field aiming to realize sophistication of analytical experiments. The most popular material in this field is Polydimethylsiloxane (PDMS) due to its low cost, self-sealing, and elastomeric property. However, chemical and physical instability is not enough. By contrast, glass is stable. In analytical field, optical transparency and durability against laser or acoustic wave is significant. But, glass is hard. So, it is difficult to make valves or pumps into a glass microchip. Here, ultra thin glass is used to make such fluidic devices exploiting the flexibility. Microchips were fabricated by wet-etching and thermal fusion to guarantee 100% glass. The valve function in a 100-µm width, 50-µm depth linear channel was then demonstrated. The durable pressure and the response time were comparable to similar PDMS-based valves. Peristaltic pump principle using 4-sequential valves was also demonstrated, and the flow rate was also comparable to conventional PDMS peristaltic pumps. This valve and pump system can be applied to wide range of fields using glass.